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Adsorption in a nonsymmetric wedge

P. Jakubczyk and M. Napikowski
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(Received 19 June 2002; published 17 October 2002

We study adsorption in a nonsymmetric wedge consisting of two chemically different, homogeneous planes.
First, we macroscopically analyze configurations of nonvolatile liquid drop placed in such a two-dimensional
wedge and construct phase diagrams describing transitions between various interfacial shapes. Then adsorption
is discussed within MFT based on the effective interfacial Hamiltonian. Two regimes for the system parameters
— the wedge opening angle {2 and the critical wetting temperatures of each of the planar waljg @nd
Two, Two<Tw1) — are identified. In one of them we find the critical filling transitionTgt< Ty, and the
corresponding critical indices which are equal to those found for a symmetric wedge. In the other regime
(Twe<Tg<Twy) interfacial configurations are similar to those exhibited in the case of a planar substrate
consisting of two chemically different parts. In the borderline cage=(Tyy,), the interface profile above the
wall with the lower wetting temperature becomes parallel to it. The line tensions correspondipgt gy,
and Tg=T,, cases are evaluated and the critical exponents — different in each case — are identified. An
effective one-dimensional Hamiltonian describing fluctuations along the wedge is constructed b the

<Ty, case.
DOI: 10.1103/PhysReVE.66.041107 PACS nunier68.08.Bc, 68.15t¢e, 64.10+h
[. INTRODUCTION struct phenomenologically a reduced, one-dimensional

Hamiltonian — similar to that proposed by Pagtal.[9] —
Numerous recent studies attempt to investigate the infludescribing fluctuations along the wedge. We point out the
ence that a nonplanar substrate’s geomélry17] or its  difficulties related to this approach in tHg =Ty, case.

chemical inhomogeneitidd 8—29 have on wetting proper- Section V contains a summary of the results.
ties. Each of these factors may independently modify the
adsorption propertiee.g., the wetting temperatuig,) of Il. THERMODYNAMIC APPROACH

the reference system in which the substrate is planar and . . . .
chemically homogeneous. However, in many experimental Ve consider a two-dimensional nonsymmetric wedge
situations these two factors are present simultanedssly consisting of two chemically different, infinite, homogeneous

Refs.[30-33). In this paper we take into account both of vyal[s, see F.ig. 1. The thermodynamic ;tate of the nqnvolatile
them by considering a wedge consisting of two chemicall))'qu'd drop is located at the bulk Ilqwd_-vapor coexistence,
different, homogeneous, planar walls. As shown recently folVith temperaturel below the lower wetting temperature of
the symmetric casiL,5], at liquid-vapor coexistence and at a the tWo substrates, i.e[<Ty,. The equilibrium contact
temperaturd < T,y the height of the liquid meniscus at the angles formed by the liquid-vapor interface and the walls are

center of the wedge becomes macroscopically large, whildniduely determined by the corresponding Young equations,

the planar walls of the wedge far from its center remain

nonwet. The temperatuig: of the filling transition depends Tgw,~ Tlw,

on the wedge opening angleb2 However, if the walls have coso; T o (1)
different critical wetting temperatures — denotedTyy; for '9

the left wall andT,y, for the right wall,T\y;>Ty, — then it
may happen that the critical filling temperature increases up
to the right wall wetting temperatufB,, and even exeeds it.
Actually, the borderline cas€r=T,,, turns out to be very
interesting because it comprises both the filling and the pla-
nar wall wetting aspects of the adsorption.

Section Il contains a preliminary thermodynamic analysis
of liquid-vapor interfacial configurations under the constraint
of constant liquid volume. The corresponding phase diagram
parametrized by two contact angles is constructed.

In Sec. Il the constraint of constant liquid volume is re-
laxed and the effective interface model describing adsorption
in a nonsymmetric wedge is studied within the mean-field
approach. The interfacial morphology is discussed, the cor- F|G. 1. An example of a meniscus in a nonsymmetric wedge.
responding line tension expressions are derived, and thethe shape of the interface is described by the functio), which
critical properties are evaluated. intersects the walls at= —x; andx=x, with contact angleg, and

In Sec. IV we go beyond the mean-field theory and con-g,.
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FIG. 2. An example of a bridgelike configuration in a nonsym- W/ ;
metric wedge. We assume>x/ for i=1,2. : i
- \@/ %
wherei=1,2. The symbolsrq, Tgw; andcr|Wi denote the i \J{/
liquid-vapor, vapor-wall, and liquid-wall surface tensions, re-
spectively. The actual configuration of the liquid-vapor inter- ’-’¢ i .
-2 2 n i ]

face is described by the functidi{x), see Fig. 1. Its equi-
librium shape minimizes the excess surface free-energy rig. 3. Phase diagram for a drop of nonvolatile liquid in a

functional. nonsymmetric wedge. The schematically sketched configurations
refer to the cas#),> 6,; the opposite cases are not displayed for
reasons of clarity. Upon crossing the straight lifle+ 6,+2¢
=, the excess free energy changes its sign, which — after relax-
Cos6, ing the prescribed volume constraint — gives the locus of fillin
——0(—x) g the p gIve -us of Tiing
sing transitions. Foré,+ 6,—2¢>m there are bridge configurations,
while for |9, — 6,| > m—2¢ the drop is situated on one of the walls.
cost, The greek letters enumerate the different drop configurations and
N sing ()], 2) refer to the free-energy formulas included in the Appendix. The
0,= /2 and 6,= 7/2 lines denote nothing but validity ranges of
certainAF expressiongsee the Appendjx

V1+(a,5)%—

AFf1=arg |

2
dx
X1

where® (x) denotes the Heaviside step function and the ex-
cess free energy is calculated with respect to the com‘igura.AF[fl f]= o ( fx
tion in which the wedge is filled by vapor only. The above ' g
functional is minimized under the constraint of a prescribed

T ETERAL
X

1

Lo , X: — X!
iquid volumeV, # [ ax AT S iy cost
*Xl I
4
X
f ’ [f(x)—|x|cotp]dx=V. (3 After inserting the profiles determined above into the free-
—x;

energy functional and selecting — for each value of system
parametersd,, 6,, and ¢ — the absolute minimum, one
_ o obtains the respective free energy. In different ranges of the
Applying the standard Lagrange multiplier method, we aresystem parameters the corresponding expressions for the free
led to the Euler-Lagrange equation, which upon integrationsnergy take different forms because the geometrical problem
gives the equilibrium meniscus shafi); it forms a part of  leading to them is slightly different in each range. They are
a circle. displayed in the Appendix. The conclusions are presented in
Equations(2) and (3) are valid if the liquid-vapor inter- Fig. 3.
face can be represented by a single-valued function. It is a We pointout that the conditioft, — 6,| +2¢> 7 implies
straightforward procedure to extend the above analysis anithat a drop placed on one of the substrates corresponds to the
its conclusions to the case in which this condition is notonly possible interfacial configuration.
fulfilled. It turns out that also in the remaining cases — For concave interfaces one h&s <0, while for all other
which include the bridgelike configurations with two inter- configurationsAF>0. The bridgelike configuration is pos-
faces — the equilibrium shapes always form a part of asible, provided the conditiofi; + 6,—2¢>  is fulfilled. In
circle. It can be convek34], concave, bridgelike, or can be this case the bridge is energetically favored over the convex
located on one of the walls. For a bridgelike configurationmeniscus and a drop sitting on one wall. All configurations
(see Fig. 2, the free-energy functional is given by with more than two interfaces are energetically disfavored.
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We note that in all the derived expressions foF, the Equation(6) can be rewritten in the following form:
excess free energy is proportional {&/. For 6;+ 6,+2¢
<@ — which corresponds tdF <0 — the excess free en- 2

. . . . . 0 a dl
ergy decreases upon increasMgunlike in all the situations H[I1]= dxl =9 — +V,(0(x))=V4(l )
whenAF>0 and it increases witkl. Thus we conclude that — 2 \dx 1
when the constant volume constraint is relaxédyill either

e e * dl\2
grow to infinity or decrease to 0. The condition f g [ 9 _
+ 0 dx 2 \dx +V2(I(X)) VZ(I’ITZ)
01+ 0,+2¢p=m (5) +agall, +1, —21(0)]. @)
marks the filling transition. It reduces to the well known - o o )
result(see Refs[1,5]) that the filling transition in the sym-  Within the MFT approximation, the equilibrium meniscus
metric wedge takes place ét= 7/2— ¢. shapel minimizes the effective Hamiltonian, which implies

We also note the change in the interfacial morphology fofihe following equation for :
|6,— 6,]=m—2¢ at which a single drop sitting on one wall
becomes stable. In the following section we show how both
these transitions manifest themselves within the mesoscopic oyg d [dI 2 4 _
description of adsorption in the wedge. 2 dx = ax VD),

ax ®

11l. ADSORPTION IN NONSYMMETRIC WEDGE — — .
where we takeVy(l) for x<0 andV,(l) otherwise. The

Adsorption in a three-dimensional wedge will be de-boundary conditions depend on the temperature of the sys-
scribed within the mean-field approach based on the effectiveem. More precisely, one has to distinguish the case$ of
interfacial Hamiltonian. Since the wedge is translationally—T,,, being negativewhich corresponds to the right wall
invariant along its edge, i.e., in tlyadirection, the mean-field being nonwet, or positive. Thus we consider two cases.
solution for the equilibrium interfacial profile displays this
symmetry and depends only aa Thus, effectively the
mean-field solutions correspond to a two-dimensional prob-
lem discussed in the preceding section, but now the fixed The boundary conditions for this case take the form
volume constraint is relaxed. The phenomenological effeciimXH;WT=|W12_ Integrating Eq(8) one is led to the follow-
tive interfacial Hamiltoniar#[ f(x) ] has the following form: ’

A T<Tw,

ing equation forl (0):

df\? —
H[f(x)]zﬁo dx[% (&) —a?|+[V1((x)) 8a1ga’[V1(1(0))=Vi(l ;)]
PRI =[V2(1(0)=V1(1(0) = Vo(l )+ Vi(l ) — 20150° ]2,
_Vl(lﬂ'l)] + fo dX[? (&) - } 9)
[V, (X)) = Vol )]] (6) From now on we restrict our analysis to the model potential
2 2om V, , corresponding to the short-range interacti¢sese Refs.
[4,5,7,39),

whereV , are the effective inteface potentials corresponding

to the planar walls forming the substrate. They are chosen is

such a way that each wall separately undergoes critical wet- I I

ting at the corresponding temperatdrg;, i=1,2. The po- Vl,z(l)=a71,2exr< B g) +b exr{ B ?) (10
tentialsV, , depend on the distance between the interface and

the substrate,l(x)=f(x)—|x|cot.¢?. The symbolslz, i \yhere the dimensionless parameters (T— Ty)/Tc mea-
=_1,2, denote the referencg equilibrium thlckness of the ligsyre the temperature with respect to itte wall wetting
uid layer adsorbed on a single planar wallidf type. We  temperature, an@ic denotes the bulk critical temperature. As

stick to the wide-wedge approximation introduced in Ref. h . ; C TR -
. . i i . . result on ins the following expression If(D):
[5], in which the interaction of the interface with the nearestt e result one obtains the following expression fi¢9)

wall is taken into account while that with the other wall is

neglected. We also assume that the substrates’ critical wet- o

ting temperatures are close to each other, as the effective [(0)=—¢&In
interaction model used below is valid for temperatures close

to wetting. Accordingly we put sip=1 and cosp=« o
= 7/2 — ¢. This approximation does not influence qualita- The singularity ofl(0) marks the filling transition, which
tively any of our further conclusions. takes place at

B a(rt7y) __[oig

b T (11)

041107-3



P. JAKUBCZYK AND M. NAPIORKOWSKI

_TW1+TW2 20'|ng

Equation(11) can be rewritten a§(0)= —&In[—(a/2b) (T

—Te/Tc)]. Itis straightforward to check that the condition — Tw2)/Tcl, we getTe=Ty, andl(0)=I

Te<Tw, corresponds to

1(x)=
1+

B 2b
I1(X)=¢&In a_rl

wherel, corresponds tax>0, |, to x<0. For arbitrary val-
ues of the system parametelrg,x) is an increasing function

of x while I,(x) decreases, provided the condition in ELR)

holds, increases if a<(a/\8agb)[(Twi—Tw2)/Tcl;
and remains constant in the borderline case
=(a/V801gb)[(Twi—Tw2)/Tc]. For typical interfacial

shapes, see Fig. 4.

B. T>Tws

In this section we investigate the casg>0 and r, <0,
which corresponds toa<(a/y8agb)[(Twi—Twz)/Tc].

. 2b a'7'2
[(x)=¢In a_7'2 1+Eex

Nl

aTl
2b

PHYSICAL REVIEW E66, 041107 (2002

a Twi—Twe
v 80’|g b TC

This condition is always fulfilled for the symmetric case. We
note that in the limiting casea=(a/\8a4b)[(Tw;

1 ( =, The meniscus
shape can be found by integrating E8§),

ol o)

(14)

The boundary conditions take the form J(imcl_(x)zoo,
limy_. ..l (x)=1,, lim_..dl/dx=0 (we assume that the
presence of the left wall does not influence the interface be-
havior in +«). After integrating Eq(8) one obtains

8ob

Te=Twi— @ Te, (15
which fulfills the inequality Ty,<Tr<Ty;. The limiting
caseTg=Ty; can be reached only in the flat substrate limit.

The meniscus shape takes the following form:

_ 1 Olg [ aTX 2 1(0)/¢
|2(X)—§|n(a—’r2[—b+7 ga_lg U—Ig(arze +Db)
1(x)= (16)
00 = ¢l 1+a7'1 F{I(O))) ar; X .
X n = —||exp ——=|— ,
! 2b ¢ V2ay4b &
where
a.3 Olg b 2
o . —4U|gaa (ot 71)— 2b ( —T1)— ZTaa a71(27'2—7'1)+80'|gaa -
=—¢lIn
2[80'|gba2—a2(72— m1)?]
|
The profilel (x) exhibits logarithmic divergence for—o~. A V(I 7le): 014(C0S0; ,— 1). (18

corresponding interfacial shape is displayed schematically in

Fig. 5.

C. Macroscopic analogies

The relation between the contact anglg, and the mini-
mum value of the effective interface potentM{I,,lz) fol-

lows from the Young equation

After expanding both sides of E¢L8) in powers ofr; , we
find 61,=(—aly2oy4b) ;5. Using the above result, it is
straightforward to check that the thermodynamic condition
for a convex interface having contact with both wallg
—0,+2¢=<m leads, upon expansion, to the following in-
equality:

041107-4
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o
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ﬁ TC
-0.
-0.4
FIG. 4. Schematic configurations of the liquid-vapor interface.
The upper curve corresponds to thecT<T,, case, while the -0.6
lower curve corresponds to thgy;>Tg>Ty,>T case. The bro-
ken lines denote asymptotes. -0.8
(0= 01| a(Twi—Twa) -1
cos¢>sm( | = +0(7%). (19
TC \/20’|gb

FIG. 6. The dependence af {o\q on temperature for different
values of the opening anglg for T<Tg<T,. All curves termi-
After neglecting terms quadratic in , one obtains the me- nate atT=Tg, the upper one correspondsTa= Ty,.
soscopic condition for filling temperatufg- staying below
Twz [36]. Analogously the condition for the interface being where the+ sign corresponds t®-> Ty, and vice versa for
concaved; + 6,+2¢=<r, leads to the following inequality: the — sign. For the effective potential in E¢L0), one ob-

tains
6,+86 —a 7t
cosé>sin 12 2= N 12 2+0(7). (20 storat o] L2 4 V20 4ba LT
= T|qg g a
Tig 7 9T S %eT T27, ar V2a1gb
In the mesoscopic approach it corresponds to the condition Tt \20gba ar

for the wedge being filled. ol ———+ a+

T1 ar; V20,4b

2
D. Line tension a“é 72
+ Y T§—47'27'1+3T§+2T§|n7_—1). (22

The line contributiony to the free energy is obtained by

subtracting from the total free ener@y{ | ], the surface en- For Te<Ty, this equation may be written as
ergy of the reference configurations described by two asymp-
totesA; o(x)=Fxcotp+l, =Fax+l|_ , which intersect

1 i v - T-Te [Te-T
at x0=5tan¢>(l7,l—l7,2 2§(|ﬂ.1—|ﬂ.2). After changing the nzgglg_m(
integration variables, the line contribution per unit length Te Te
along the wedge takes the form

) +Aq, (23

while for T-=T, it takes the form

1(0)
n=fl d{v201g\ V() = V1l ;) — oiga} §oga Te

LB n= (T_TF)Zln
V8agh(Tw,—Te) Te

+A,,

C

[
+ J “dIi{ =201\ Vo) = Vy(l,) + oigal 24

'(0) whereA; andA, are decreasing, negative functions of tem-

0 perature, analytic fof<Tg. The dependence of on tem-
—J dXVi(2xa+1; )=Vl ;)] (21)  perature for different values @b is shown in Fig. 6.

%0 We remark that the method of evaluatingpplied here is
unsuitable for the cas&g>Tyy,, which may occur for¢
large enough. We note that fgr— 7/2 the abscissa, of the
asymptotes intersection approaches. This behavior cor-
responds to the right asymptote extending frerw to +o
17 3= in the limit of a planar substrate and it certainly lacks physi-
~< cal sense. Bearing this in mind we substracted a reference
e >y configuration which is discontinuous &=0 (similarly as

- in Ref. [29] for the planar, inhomogeneous substrate tase

FIG. 5. Schematic configuration of the liquid-vapor interface for Then we find» to diverge logarytmically alf =Ty, i.e.,

Te>T>Ty,. The broken line denotes the asymptote. n~In[(Two—T)/Tc].

=
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IV. FLUCTUATIONS from which the values of the critical indicg8,=3 and vy

. S . . =2 follow. These values are the same as in the symmetric
4
An effective way of describing interfacial fluctuations case (see Refs.[9,10). The above form of the one-

along a symmetric wedge near the filling transition was de-. . T ) .
, . dimensional Hamiltonian is not suitable for studying the case
veloped by Parnet al.[9]. It exploits the separation of char-

acteristic length scales in the system determined by the coE:F:TWZ' On one hand it misses the critical interfacial fluc-

relation lengths along and across the wedge, denoteg}, by uations related to wetting poi_nt of the right WaII,_ yvhile on
. . ' the other hand these fluctuations become modified by the
and &,, respectively. The fluctuations along the wedge are
. " . presence of the left wall.
well characterized by the position of the interface at the cen*®
ter (x=0) of the wedge, i.e.]o(y)=I(0y). For a fixed
value ofy, the position of the interface practically does not
change upon varying between the walls. Only when the  We have studied the liquid-vapor interfacial configura-
wall is approached, it makes the interface bend and follow itsions in a nonsymmetric wedge. First, the phase diagram
shape. The phenomenological procedure devised for theescribing the configurations of a nonvolatile liquid drop
symmetric case can be implemented in the nonsymmetriplaced in a two-dimensional nonsymmetric wedge has been
case forTe<Ty, as well. Assuming that for temperatures constructed and parametrized by the contact ang/eand
close to the filling temperatur@t which 6, + 6,+2¢ =), 6, corresponding to each of the walls. In addition to configu-
a practically flat interface tilted with respect to thg,Y) rations known already from the symmetric wedge studies,
plane, in accordance with the above contact angle values.g., the bridge configurations, one finds ranges of contact

extending between the walls, leads to the following one-angles (6, — 0,|>m—2¢) in which the drop is located on

V. SUMMARY

dimensional Hamiltonian:

1
— J’_ —
0, 64

1
02+ 01—2a+ E

Hilo(y) =01 | dy[low)

dly)2
(&)

] . (25

one wall only and has no contact with the other wall. Second,
after relaxing the constant volume constraint and studying
adsorption within the mean-field approach based on the ef-
fective interfacial Hamiltonian one identifies two regimes for
the parameters in which the system behaves differently. If
cos¢>(aly8agb)[ (Twi—Twz)/Tcl, which corresponds to
Te<Twe, the system’s behavior is similar to that obtained
for a symmetric wedge: at=Tg we find a filling transition

It reduces to the corresponding symmetric wedge result foat which the position of the interface located above the edge

0,= 60,. Appropriate rescaling of the variables—Y and
l[o(y)—L(Y) in the above Hamiltonian,

y=013" 401+ 0,—2a) 30, + 0, Y, (26)

lo(y)=01g" 201+ 0,—2a) 407 M+ 0,1 " HAL(Y),

leads to its parameter-free form

1
H[L(Y)]zdeL(Y) 1+§[L’(Y)]2). (27

of the wedge diverges. Within the mean-field theory this di-
vergence is logarithmic A3" =0), while fluctuations
modify this result toBy=%; the corresponding value of the
longitudinal correlation length exponent is,= 3. The
nonanalytic behavior of the line tensionis represented by
the term »~(T—Tg)IN[(TE—T)/Tc]. In the limiting case,
cos¢=(a/y8agh)[ (Twi—Twz)/Tcl, which corresponds to
Te=Twe, the nonanalyticity of the mean-field line tension is
represented by the term~ (T —Tg)2In[(Te—T)/Tcl.

APPENDIX

In this appendix we collect the results of the macroscopic

As the result one obtains the following scaling behavior ofanalysis of the free energy. The expressions Adf;, i

the average position of the interfadig) and the correlation
length ¢, :

(lo)~(Or+ 6, —2a) 14, (28)
&~ (Or+ 6. —2a) %", (29)

=a,B,7,& 6,0, correspond to different parameter ranges,
which are specified in Fig. 3. These expressions are valid for
0,<0,. To consider the opposite case, i.6,>6,, one
should swap the contact angles in the formulas. Below, we
quote the relevant formulas together with the range of their
applicability.

(1) 61+ O,+2p<,

AFa: \/v0'|g o — 01_ 02_2¢_

1 1
+ E[cosaﬁ cog 6,+2¢)][cosh,+cog 6, + 2¢)]Sin 5

2 c0s6,c0s6,+ cosh,cog 6,1+ 2¢)+cosh,co8 0,+2¢) || 1
sin 2 Esm(01+ 0,+2¢)
™, bt e AL

041107-6
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(2) 01> 7T/2,02> 7T/2,
AFz=—AF,. (A2)

(3) 02< 7T/2,01+ 02“1‘ 2¢> r,

01+ 6,
+
5 T

AF7:0'|Q\/V

w1 | cosgeod 202
sing cosg | 03710 75 ¢

02_01 01+02 K
Rl

1
— 58in(0,+ 6,4 2¢)

+ cos&zco{

2
cos6, 041

—_—t

cog 601+2¢) 2 Cog(

»— 01 cosb, 1 712
5~ ¢

cog 6,+2¢) sin2¢

+ ¢ |cog o

(A3)

(4) 01< 7T/2,02< 7T/2,01+ 02+ 2¢> ,

PHYSICAL REVIEW E56, 041107 (2002

6,+6
sin¢ cos¢ €0S02€08 5 ¢
01— 0> 01+ 0,
+cos¢91cos< > +¢)H AT
1. cos6, 01+ 6,
= 5SIN01+ 05+ 2¢) == o3 0,7 28) 200§(
6,— cosé 1 |7
+ 6 |cog| 2 2 .
2 coq 0,+2¢) sin2¢
(A4)
(5) 01_ 02+2¢>7T,
1 1/2
AFE=2(T|g\/V( 65— 5sin 202) : (A5)
(6) 01+ 02_2¢>7T,
1 1 1/2
AF ,=2014\V| 6, + 6,— 7~ 5Sin 20, — 5sin 26,
(A6)

Note a mistake in Eq.2.13 in Ref.[5]. The correct form of
this equation can be obtained from E@6) upon putting
01: 02.
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