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Adsorption in a nonsymmetric wedge

P. Jakubczyk and M. Napio´rkowski
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoz˙a 69, 00-681 Warszawa, Poland

~Received 19 June 2002; published 17 October 2002!

We study adsorption in a nonsymmetric wedge consisting of two chemically different, homogeneous planes.
First, we macroscopically analyze configurations of nonvolatile liquid drop placed in such a two-dimensional
wedge and construct phase diagrams describing transitions between various interfacial shapes. Then adsorption
is discussed within MFT based on the effective interfacial Hamiltonian. Two regimes for the system parameters
— the wedge opening angle (2f) and the critical wetting temperatures of each of the planar walls (TW1 and
TW2 , TW2,TW1) — are identified. In one of them we find the critical filling transition atTF,TW2 and the
corresponding critical indices which are equal to those found for a symmetric wedge. In the other regime
(TW2,TF,TW1) interfacial configurations are similar to those exhibited in the case of a planar substrate
consisting of two chemically different parts. In the borderline case (TF5TW2), the interface profile above the
wall with the lower wetting temperature becomes parallel to it. The line tensions corresponding toTF,TW2

and TF5TW2 cases are evaluated and the critical exponents — different in each case — are identified. An
effective one-dimensional Hamiltonian describing fluctuations along the wedge is constructed for theTF

,TW2 case.

DOI: 10.1103/PhysRevE.66.041107 PACS number~s!: 68.08.Bc, 68.15.1e, 64.10.1h
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I. INTRODUCTION

Numerous recent studies attempt to investigate the in
ence that a nonplanar substrate’s geometry@1–17# or its
chemical inhomogeneities@18–29# have on wetting proper
ties. Each of these factors may independently modify
adsorption properties~e.g., the wetting temperatureTW) of
the reference system in which the substrate is planar
chemically homogeneous. However, in many experime
situations these two factors are present simultaneously~see
Refs. @30–33#!. In this paper we take into account both
them by considering a wedge consisting of two chemica
different, homogeneous, planar walls. As shown recently
the symmetric case@1,5#, at liquid-vapor coexistence and at
temperatureTF,TW the height of the liquid meniscus at th
center of the wedge becomes macroscopically large, w
the planar walls of the wedge far from its center rem
nonwet. The temperatureTF of the filling transition depends
on the wedge opening angle 2f. However, if the walls have
different critical wetting temperatures — denoted byTW1 for
the left wall andTW2 for the right wall,TW1.TW2 — then it
may happen that the critical filling temperature increases
to the right wall wetting temperatureTW2 and even exeeds it
Actually, the borderline caseTF5TW2 turns out to be very
interesting because it comprises both the filling and the
nar wall wetting aspects of the adsorption.

Section II contains a preliminary thermodynamic analy
of liquid-vapor interfacial configurations under the constra
of constant liquid volume. The corresponding phase diag
parametrized by two contact angles is constructed.

In Sec. III the constraint of constant liquid volume is r
laxed and the effective interface model describing adsorp
in a nonsymmetric wedge is studied within the mean-fi
approach. The interfacial morphology is discussed, the
responding line tension expressions are derived, and t
critical properties are evaluated.

In Sec. IV we go beyond the mean-field theory and co
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struct phenomenologically a reduced, one-dimensio
Hamiltonian — similar to that proposed by Parryet al. @9# —
describing fluctuations along the wedge. We point out
difficulties related to this approach in theTF5TW2 case.

Section V contains a summary of the results.

II. THERMODYNAMIC APPROACH

We consider a two-dimensional nonsymmetric wed
consisting of two chemically different, infinite, homogeneo
walls, see Fig. 1. The thermodynamic state of the nonvola
liquid drop is located at the bulk liquid-vapor coexistenc
with temperatureT below the lower wetting temperature o
the two substrates, i.e.,T,TW2. The equilibrium contact
angles formed by the liquid-vapor interface and the walls
uniquely determined by the corresponding Young equatio

cosu i5
sgwi

2s lwi

s lg
, ~1!

FIG. 1. An example of a meniscus in a nonsymmetric wed
The shape of the interface is described by the functionf (x), which
intersects the walls atx52x1 andx5x2 with contact anglesu1 and
u2.
©2002 The American Physical Society07-1
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where i 51,2. The symbolss lg , sgwi
, ands lwi

denote the

liquid-vapor, vapor-wall, and liquid-wall surface tensions, r
spectively. The actual configuration of the liquid-vapor int
face is described by the functionf (x), see Fig. 1. Its equi-
librium shape minimizes the excess surface free-ene
functional.

DF@ f #5s lgE
2x1

x2
dxFA11~]xf !22

cosu1

sinf
Q~2x!

2
cosu2

sinf
Q~x!G , ~2!

whereQ(x) denotes the Heaviside step function and the
cess free energy is calculated with respect to the config
tion in which the wedge is filled by vapor only. The abo
functional is minimized under the constraint of a prescrib
liquid volumeV,

E
2x1

x2
@ f ~x!2uxucotf#dx5V. ~3!

Applying the standard Lagrange multiplier method, we a
led to the Euler-Lagrange equation, which upon integrat

gives the equilibrium meniscus shapef̄ (x); it forms a part of
a circle.

Equations~2! and ~3! are valid if the liquid-vapor inter-
face can be represented by a single-valued function. It
straightforward procedure to extend the above analysis
its conclusions to the case in which this condition is n
fulfilled. It turns out that also in the remaining cases
which include the bridgelike configurations with two inte
faces — the equilibrium shapes always form a part o
circle. It can be convex@34#, concave, bridgelike, or can b
located on one of the walls. For a bridgelike configurati
~see Fig. 2!, the free-energy functional is given by

FIG. 2. An example of a bridgelike configuration in a nonsy
metric wedge. We assumexi.xi8 for i 51,2.
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DF@ f 1 , f 2#5s lgS E
2x1

x2
dxA11~]xf 1!2

1E
2x18

x28 dxA11~]xf 2!22(
i

xi2xi8

sinf
cosu i D .

~4!

After inserting the profiles determined above into the fre
energy functional and selecting — for each value of syst
parametersu1 , u2, and f — the absolute minimum, one
obtains the respective free energy. In different ranges of
system parameters the corresponding expressions for the
energy take different forms because the geometrical prob
leading to them is slightly different in each range. They a
displayed in the Appendix. The conclusions are presente
Fig. 3.

We pointout that the conditionuu12u2u12f.p implies
that a drop placed on one of the substrates corresponds t
only possible interfacial configuration.

For concave interfaces one hasDF,0, while for all other
configurationsDF.0. The bridgelike configuration is pos
sible, provided the conditionu11u222f.p is fulfilled. In
this case the bridge is energetically favored over the con
meniscus and a drop sitting on one wall. All configuratio
with more than two interfaces are energetically disfavore

FIG. 3. Phase diagram for a drop of nonvolatile liquid in
nonsymmetric wedge. The schematically sketched configurat
refer to the caseu1.u2; the opposite cases are not displayed
reasons of clarity. Upon crossing the straight lineu11u212f
5p, the excess free energy changes its sign, which — after re
ing the prescribed volume constraint — gives the locus of filli
transitions. Foru11u222f.p there are bridge configurations
while for uu12u2u.p22f the drop is situated on one of the wall
The greek letters enumerate the different drop configurations
refer to the free-energy formulas included in the Appendix. T
u15p/2 andu25p/2 lines denote nothing but validity ranges o
certainDF expressions~see the Appendix!.
7-2
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ADSORPTION IN A NONSYMMETRIC WEDGE PHYSICAL REVIEW E66, 041107 ~2002!
We note that in all the derived expressions forDF, the
excess free energy is proportional toAV. For u11u212f
,p — which corresponds toDF,0 — the excess free en
ergy decreases upon increasingV, unlike in all the situations
whenDF.0 and it increases withV. Thus we conclude tha
when the constant volume constraint is relaxed,V will either
grow to infinity or decrease to 0. The condition

u11u212f5p ~5!

marks the filling transition. It reduces to the well know
result ~see Refs.@1,5#! that the filling transition in the sym
metric wedge takes place atu5p/22f.

We also note the change in the interfacial morphology
uu12u2u5p22f at which a single drop sitting on one wa
becomes stable. In the following section we show how b
these transitions manifest themselves within the mesosc
description of adsorption in the wedge.

III. ADSORPTION IN NONSYMMETRIC WEDGE

Adsorption in a three-dimensional wedge will be d
scribed within the mean-field approach based on the effec
interfacial Hamiltonian. Since the wedge is translationa
invariant along its edge, i.e., in they direction, the mean-field
solution for the equilibrium interfacial profile displays th
symmetry and depends only onx. Thus, effectively the
mean-field solutions correspond to a two-dimensional pr
lem discussed in the preceding section, but now the fi
volume constraint is relaxed. The phenomenological eff
tive interfacial HamiltonianH@ f (x)# has the following form:

H@ f ~x!#5E
2`

0

dxH s lg

2 F S d f

dxD
2

2a2G1@V1„l ~x!…

2V1~ l p1
!#J 1E

0

`

dxH s lg

2 F S d f

dxD
2

2a2G
1@V2„l ~x!…2V2~ l p2

!#J , ~6!

whereV1,2 are the effective inteface potentials correspond
to the planar walls forming the substrate. They are chose
such a way that each wall separately undergoes critical w
ting at the corresponding temperatureTWi , i 51,2. The po-
tentialsV1,2 depend on the distance between the interface
the substrate,l (x)5 f (x)2uxucotf. The symbols l p i

, i

51,2, denote the reference equilibrium thickness of the
uid layer adsorbed on a single planar wall ofi th type. We
stick to the wide-wedge approximation introduced in R
@5#, in which the interaction of the interface with the neare
wall is taken into account while that with the other wall
neglected. We also assume that the substrates’ critical
ting temperatures are close to each other, as the effec
interaction model used below is valid for temperatures cl
to wetting. Accordingly we put sinf.1 and cosf.a
5 p/22f. This approximation does not influence qualit
tively any of our further conclusions.
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Equation~6! can be rewritten in the following form:

H@ l #5E
2`

0

dxH s lg

2 S dl

dxD
2

1V1„l ~x!…2V1~ l p1
!J

1E
0

`

dxH s lg

2 S dl

dxD
2

1V2„l ~x!…2V2~ l p2
!J

1s lga@ l p2
1 l p1

22l ~0!#. ~7!

Within the MFT approximation, the equilibrium meniscu
shapel̄ minimizes the effective Hamiltonian, which implie
the following equation forl̄ :

s lg

2

d

dx
S d l̄

dx
D 2

5
d

dx
V1,2~ l̄ !, ~8!

where we takeV1( l̄ ) for x<0 and V2( l̄ ) otherwise. The
boundary conditions depend on the temperature of the
tem. More precisely, one has to distinguish the cases oT
2TW2 being negative~which corresponds to the right wa
being nonwet!, or positive. Thus we consider two cases.

A. TÏTW2

The boundary conditions for this case take the fo
limx→7` l̄ 5 l p1,2

. Integrating Eq.~8! one is led to the follow-

ing equation forl̄ (0):

8s lga2@V1„ l̄ ~0!…2V1~ l p1
!#

5@V2„ l̄ ~0!…2V1„ l̄ ~0!…2V2~ l p2
!1V1~ l p1

!22s lga2#2.

~9!

From now on we restrict our analysis to the model poten
V1,2 corresponding to the short-range interactions~see Refs.
@4,5,7,35#!,

V1,2~ l !5at1,2expS 2
l

j D1b expS 2
2l

j D , ~10!

where the dimensionless parameterst i5(T2TWi)/TC mea-
sure the temperature with respect to thei th wall wetting
temperature, andTC denotes the bulk critical temperature. A
the result one obtains the following expression forl̄ (0):

l̄ ~0!52j lnF2
a~t11t2!

4b
2As lg

2b
aG . ~11!

The singularity of l̄ (0) marks the filling transition, which
takes place at
7-3
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TF5
TW11TW2

2
2a

A2s lgb

a
TC . ~12!

Equation~11! can be rewritten asl̄ (0)52j ln@2(a/2b)(T
2TF /TC)#. It is straightforward to check that the conditio
TF,TW2 corresponds to
y

04110
a.
a

A8s lgb

TW12TW2

TC
. ~13!

This condition is always fulfilled for the symmetric case. W
note that in the limiting casea5(a/A8s lgb)@(TW1

2TW2)/TC#, we getTF5TW2 and l̄ (0)5 l p2
. The meniscus

shape can be found by integrating Eq.~8!,
l̄ ~x!55 l 2~x!5j lnH 2b

at2
F H 11

at2

2b
expS l ~0!

j D J expS at2

A2s lgb

x

j D 21G J
l 1~x!5j lnH 2b

at1
F H 11

at1

2b
expS l ~0!

j D J expS 2
at1

A2s lgb

x

j D 21G J ,

~14!
be-

it.
wherel 2 corresponds tox.0, l 1 to x,0. For arbitrary val-
ues of the system parameters,l 1(x) is an increasing function
of x while l 2(x) decreases, provided the condition in Eq.~13!
holds, increases if a,(a/A8s lgb)@(TW12TW2)/TC#;
and remains constant in the borderline casea
5(a/A8s lgb)@(TW12TW2)/TC#. For typical interfacial
shapes, see Fig. 4.

B. TÌTW2

In this section we investigate the caset2.0 andt1,0,
which corresponds toa,(a/A8s lgb)@(TW12TW2)/TC#.
The boundary conditions take the form limx→` l̄ (x)5`,
limx→2` l̄ (x)5 l p1

, limx→`d l̄ /dx50 ~we assume that the
presence of the left wall does not influence the interface
havior in 1`). After integrating Eq.~8! one obtains

TF5TW12a
A8sb

a
TC , ~15!

which fulfills the inequalityTW2,TF,TW1. The limiting
caseTF5TW1 can be reached only in the flat substrate lim
The meniscus shape takes the following form:
l ~x!55 l 2~x!5j lnH 1

at2
F2b1

s lg

2 S at2x

js lg
1A 2

s lg
~at2el (0)/j1b! D G J

l 1~x!5j lnH 2b

at1
F S 11

at1

2b
expS l ~0!

j D DexpS 2
at1

A2s lgb

x

j D 21G J ,

~16!

where

l ~0!52j lnH 24s lgaa2~t21t1!2
a3

2b
t1

2~t22t1!2A2
s lg

b
aaS at1~2t22t1!18s lg

b

a
a2D

2@8s lgba22a2~t22t1!2#
J . ~17!
ion

-

The profilel (x) exhibits logarithmic divergence forx→`. A
corresponding interfacial shape is displayed schematicall
Fig. 5.

C. Macroscopic analogies

The relation between the contact angleu1,2 and the mini-
mum value of the effective interface potentialV( l p1,2

) fol-
lows from the Young equation
in
V~ l p1,2

!5s lg~cosu1,221!. ~18!

After expanding both sides of Eq.~18! in powers oft1,2 we
find u1,25(2a/A2s lgb)t1,2. Using the above result, it is
straightforward to check that the thermodynamic condit
for a convex interface having contact with both wallsu1
2u212f<p leads, upon expansion, to the following in
equality:
7-4
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cosf.sinS u22u1

2 D5
a~TW12TW2!

TCA2s lgb
1O~t i

2!. ~19!

After neglecting terms quadratic int1,2 one obtains the me
soscopic condition for filling temperatureTF staying below
TW2 @36#. Analogously the condition for the interface bein
concave,u11u212f<p, leads to the following inequality

cosf.sin
u11u2

2
5

2a

A2s lgb

t11t2

2
1O~t i

2!. ~20!

In the mesoscopic approach it corresponds to the cond
for the wedge being filled.

D. Line tension

The line contributionh to the free energy is obtained b
subtracting from the total free energyH@ l̄ #, the surface en-
ergy of the reference configurations described by two asy
totesA1,2(x)57x cotf1lp1,2

.7ax1 l p1,2
, which intersect

at x05 1
2 tanf( l p1

2 l p2
). 1

2 ( l p1
2 l p2

). After changing the
integration variables, the line contribution per unit leng
along the wedge takes the form

h5E
l p1

l (0)

dl$A2s lgAV1~ l !2V1~ l p1
!2s lga%

1E
l (0)

l p2
dl$6A2s lgAV2~ l !2V2~ l p2

!1s lga%

2E
x0

0

dx@V1~2xa1 l p2
!2V1~ l p1

!#, ~21!

FIG. 4. Schematic configurations of the liquid-vapor interfa
The upper curve corresponds to theT,TF,TW2 case, while the
lower curve corresponds to theTW1.TF.TW2.T case. The bro-
ken lines denote asymptotes.

FIG. 5. Schematic configuration of the liquid-vapor interface
TF.T.TW2. The broken line denotes the asymptote.
04110
n

p-

where the1 sign corresponds toTF.TW2 and vice versa for
the 2 sign. For the effective potential in Eq.~10!, one ob-
tains

h522js lga1js lglnFt11t2

2t2
1

A2s lgba

at2
G S a1

at2

A2s lgb
D

1js lglnFt21t1

2t1
1

A2s lgba

at1
G S a1

at1

A2s lgb
D

1
a2j

16ba S t2
224t2t113t1

212t1
2ln

t2

t1
D . ~22!

For TF,TW2 this equation may be written as

h5js lg

T2TF

TC
lnS TF2T

TC
D1A1 , ~23!

while for TF5TW2 it takes the form

h5
js lga

A8s lgb~TW12TF!TC

~T2TF!2lnS TF2T

TC
D1A2 ,

~24!

whereA1 andA2 are decreasing, negative functions of tem
perature, analytic forT<TF . The dependence ofh on tem-
perature for different values off is shown in Fig. 6.

We remark that the method of evaluatingh applied here is
unsuitable for the caseTF.TW2, which may occur forf
large enough. We note that forf→p/2 the abscissax0 of the
asymptotes intersection approaches2`. This behavior cor-
responds to the right asymptote extending from2` to 1`
in the limit of a planar substrate and it certainly lacks phy
cal sense. Bearing this in mind we substracted a refere
configuration which is discontinuous atx050 ~similarly as
in Ref. @29# for the planar, inhomogeneous substrate ca!.
Then we findh to diverge logarytmically atT5TW2, i.e.,
h; ln@(TW22T)/TC#.

.

r

FIG. 6. The dependence ofh/js lg on temperature for differen
values of the opening anglef for T<TF<TW2. All curves termi-
nate atT5TF , the upper one corresponds toTF5TW2.
7-5
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IV. FLUCTUATIONS

An effective way of describing interfacial fluctuation
along a symmetric wedge near the filling transition was
veloped by Parryet al. @9#. It exploits the separation of cha
acteristic length scales in the system determined by the
relation lengths along and across the wedge, denoted bjy
and jx , respectively. The fluctuations along the wedge
well characterized by the position of the interface at the c
ter (x50) of the wedge, i.e.,l 0(y)[ l (0,y). For a fixed
value ofy, the position of the interface practically does n
change upon varyingx between the walls. Only when th
wall is approached, it makes the interface bend and follow
shape. The phenomenological procedure devised for
symmetric case can be implemented in the nonsymme
case forTF,TW2 as well. Assuming that for temperature
close to the filling temperature~at whichu11u212f5p),
a practically flat interface tilted with respect to the (x,y)
plane, in accordance with the above contact angle va
extending between the walls, leads to the following on
dimensional Hamiltonian:

H@ l 0~y!#5s lgE dyH l 0~y!Fu21u122a1
1

2 S 1

u2
1

1

u1
D

3S dl0
dy D 2G J . ~25!

It reduces to the corresponding symmetric wedge result
u15u2. Appropriate rescaling of the variablesy→Y and
l 0(y)→L(Y) in the above Hamiltonian,

y5s lg
21/2~u11u222a!23/4~u1

211u2
21!1/4Y, ~26!

l 0~y!5s lg
21/2~u11u222a!21/4~u1

211u2
21!21/4L~Y!,

leads to its parameter-free form

H@L~Y!#5E dYL~Y!S 11
1

2
@L8~Y!#2D . ~27!

As the result one obtains the following scaling behavior
the average position of the interface^ l 0& and the correlation
lengthjy :

^ l 0&;~uR1uL22a!21/4, ~28!

jy;~uR1uL22a!23/4, ~29!
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from which the values of the critical indicesb05 1
4 and ny

5 3
4 follow. These values are the same as in the symme

case ~see Refs. @9,10#!. The above form of the one
dimensional Hamiltonian is not suitable for studying the ca
TF5TW2. On one hand it misses the critical interfacial flu
tuations related to wetting point of the right wall, while o
the other hand these fluctuations become modified by
presence of the left wall.

V. SUMMARY

We have studied the liquid-vapor interfacial configur
tions in a nonsymmetric wedge. First, the phase diagr
describing the configurations of a nonvolatile liquid dro
placed in a two-dimensional nonsymmetric wedge has b
constructed and parametrized by the contact anglesu1 and
u2 corresponding to each of the walls. In addition to config
rations known already from the symmetric wedge studi
e.g., the bridge configurations, one finds ranges of con
angles (uu12u2u.p22f) in which the drop is located on
one wall only and has no contact with the other wall. Seco
after relaxing the constant volume constraint and study
adsorption within the mean-field approach based on the
fective interfacial Hamiltonian one identifies two regimes f
the parameters in which the system behaves differently
cosf.(a/A8s lgb)@(TW12TW2)/TC#, which corresponds to
TF,TW2, the system’s behavior is similar to that obtain
for a symmetric wedge: atT5TF we find a filling transition
at which the position of the interface located above the e
of the wedge diverges. Within the mean-field theory this
vergence is logarithmic (b0

MF50), while fluctuations
modify this result tob05 1

4 ; the corresponding value of th
longitudinal correlation length exponent isny5 3

4 . The
nonanalytic behavior of the line tensionh is represented by
the term h;(T2TF)ln@(TF2T)/TC#. In the limiting case,
cosf5(a/A8s lgb)@(TW12TW2)/TC#, which corresponds to
TF5TW2, the nonanalyticity of the mean-field line tension
represented by the termh;(T2TF)2ln@(TF2T)/TC#.

APPENDIX

In this appendix we collect the results of the macrosco
analysis of the free energy. The expressions forDFi , i
5a,b,g,j,e,s, correspond to different parameter range
which are specified in Fig. 3. These expressions are valid
u1,u2. To consider the opposite case, i.e.,u1.u2, one
should swap the contact angles in the formulas. Below,
quote the relevant formulas together with the range of th
applicability.

~1! u11u212f,p,
DFa5AVs lgFp2u12u222f2
2 cosu1cosu21cosu1cos~u112f!1cosu2cos~u212f!

sin 2f GF1

2
sin~u11u212f!

1
1

2
@cosu11cos~u212f!#@cosu21cos~u112f!#

1

sin 2f
2

p

2
1

u11u2

2
1fG21/2

. ~A1!
7-6
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~2! u1.p/2,u2.p/2,

DFb52DFa . ~A2!

~3! u2,p/2,u11u212f.p,

DFg5s lgAVFu11u212f2p1cosS u11u2

2
1f D

3
1

sinf cosf H cosu1cosS u12u2

2
1f D

1cosu2cosS u22u1

2
1f D J GFu11u2

2
1f2

p

2

2
1

2
sin~u11u212f!

cosu2

cos~u112f!
12 cos2S u11u2

2

1f D cos2S u22u1

2
2f D cosu1

cos~u112f!

1

sin 2fG21/2

.

~A3!

~4! u1,p/2,u2,p/2,u11u212f.p,
r

in
n

ath

n

.
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DFj5s lgAVFu11u212f2p1cosS u11u2

2
1f D

3
1

sinf cosf H cosu2cosS u22u1

2
1f D

1cosu1cosS u12u2

2
1f D J GFu11u2

2
1f2

p

2

2
1

2
sin~u11u212f!

cosu1

cos~u212f!
12 cos2S u11u2

2

1f D cos2S u22u1

2
1f D cosu2

cos~u212f!

1

sin2fG21/2

.

~A4!

~5! u12u212f.p,

DFe52s lgAVS u22
1

2
sin 2u2D 1/2

. ~A5!

~6! u11u222f.p,

DFs52s lgAVFu11u22p2
1

2
sin 2u12

1

2
sin 2u2G1/2

.

~A6!

Note a mistake in Eq.~2.13! in Ref. @5#. The correct form of
this equation can be obtained from Eq.~A6! upon putting
u15u2.
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